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Out-of-Zone Effects in Dynamic Electron Diffraction Intensities from Gold 
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An investigation was made of electron diffraction from Au [111] oriented foils using the experimental 
method of fine-focus convergent-beam electron diffraction. The experimental data were compared 
directly with intensity distributions computed by multislice methods for n-beam diffraction from tabu- 
lated Au structure factors. Reasonable agreement could be obtained between calculation and experiment 
only if adequate representation was made of out-of-zone dynamic coupling. Calculations which allowed 
only coupling in the zone gave very poor fit with experiment and seemed only suitable for thickness 
estimation. 

Introduction 

Excellent agreement with experiment has been achieved 
in a number of theoretical n-beam dynamic electron 
diffraction calculations for small-unit-cell crystals 
composed of light atoms (Goodman & Lehmpfuhl, 
1967). A variety of methods has been used including 
those based on the dispersion equation, the scattering 
matrix and the multislice formulation. It was ap- 
preciated that for heavy atoms the dynamic coupling 
would be greater and the calculations larger. Fisher 
(1968) reported n-beam calculations for CuAu3 alloys 
and concluded that for many orientations 50 beams in 
the zone would provide quite good accuracy. 

In the present study on gold [111] oriented foils the 
theoretical calculations have been compared with ex- 
perimental results from the convergent beam electron 
diffraction camera. From these comparisons the errors 
introduced by various approximations have been 
evaluated. For calculations of electron diffraction 
from crystals of small unit cell containing only light 
atoms, some of the approximations that are used 
successfully were found to be unsuitable for gold. 

Initially, thickness determination was made using 
the special purpose analog computer built by Johnson 
(1968). The high speed of this machine enabled rapid 
determination of the coarse features of the experi- 
mental pattern with inclusion of up to seven coupled 
beams. Subsequent calculations in greater detail were 
made by multislice methods on digitaI computers 
(CDC 3600 & 3200). It was found necessary to in- 
clude up to 139 beams in these calculations in order to 
obtain reasonable accuracy. 

Theory 

The calculations made in this study make use of the 
Cowley-Moodie recurrence relation (Cowley & Moo- 
die, 1957). The wave function 7%(x,y) at the exit face 
of a thin arbitrary slice of crystal is described in terms 
of the wave function at the exit face of the previous 
slice ~m-~(x,y), a propagation function p(x,y) de- 

scribing the phase changes due to propagation and a 
function qm(x,y) representing the phase changes re- 
sulting from the potential of the ruth slice projected on 
to a two-dimensional sheet at the centre of the slice, 

~m(X,y)= ~m-a(x,y)*p(x,y). qm(x,y). (1) 

The starting point of the calculation is the wave 
function at the exit face of the first slice which is 
q~(x,y) acting on a parallel wave at normal incidence 
and of unit intensity. Hence it is equal to qa(x,y). It is 
convenient to compute with the Fourier transform of 
(1) which for perfect crystals can be written as 

Um(h,k)=[Um-a(h,k) . P(h,k)]*Qm(h,k) . (2) 

Now qm(x,y), usually termed the phase grating, for 
finite slice thickness can be written as 

qm(x,y)=exp ia ~Om(X,y,z)dz (3) 
*.IZ m 

where q)m(x,y,z) is the potential distribution in the 
mth slice and a relativistic G is used 

2rim02 ( h2 ) a/2 
a -  h2 1 + m02c222- , (4) 

where c is the velocity of light, m0 is the rest mass of an 
electron, 2 is the relativistic wavelength and h is 
Planck's constant. Now for a perfect crystal, Cpm is 
periodic in x and y; hence qm(x,y) is also. Thus the 
Fourier transform of qm(x,y) can be written as 

° 

Qm(h,k)= qm(x,y) exp {2rci(hx+ky)}dxdy , (5) 
0 0 

where h and k are integers denoting a particular order 
of reflexion. The phase grating Qm(h, k) must satisfy a 
unitarity test (Moodie, 1965) 

~ Qm(h+h',k+k'). Qm(h,k)=l,h'=k'=O ; 
h k 

= 0, all other h', k ' ,  

which will show to what degree it is a satisfactory non- 
absorbing phase object and if sufficient reflexions have 

A C 2 7 A  - 1 
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been chosen to describe the diffraction problem. In 
practice, for h'=k'=O the phase grating is considered 
to be satisfactory if the result of the unitarity test is 
less than one by no more than 10 -6 and for other 
h',k' the result differs from zero by no more than 10 -6. 
Similarly the result of a multislice calculation is 
considered satisfactory if at the end of the last slice the 
sum of intensities of the diffracted beams is not less 
than 0.9 (the calculation starting with unit intensity). 
If an insufficient number of reflexions have been chosen 
for the multislice operation, then the phase grating, 
which contains many more reflexions, rapidly absorbs 
intensity into the neglected weak beams. 

These two properties of the Cowley-Moodie ap- 
proach to the calculation of dynamic diffraction in- 
tensities are to be contrasted with eigenvalue methods 
of Howie & Whelan (1962) and the scattering matrix 
of Niehrs (1959) which are 'self-normalizing'. In these 
methods the calculation itself gives no indication that 
an insufficient number of reflexions has been taken. 
Some indication is given that sufficient beams have 
been taken if the calculation is repeated with more 
reflexions until no change in result is obtained. With 
the 'S' matrix method (Sturkey, 1962) the calculation 
is not necessarily self-normalizing. In practice the 
approximation is made that out-of-zone reflexions may 
be excluded; that is, those terms in the scattering ma- 
trix of the form Vh~l exp (2nil.z), as distinct from 
Vh~o, must be excluded if the solution to the scattering 
problem is simply exp {i(M)z}, where M is the scat- 
tering matrix. 

The Cowley-Moodie approach, however, does not 
indicate within the calculation the necessity to extend 
the calculation from one dimension in the plane of the 
slice (systematics approximation) to two dimensions in 
the plane of the slice. In multislice calculations, upper 
layer-line effects are always included. If the dynamic 
coupling is weak the effects of upper layer lines may be 
minimized by proper choice of slice thickness with 
respect to size of the array of beams chosen. The only 
criterion used in these respects is the degree of agree- 
ment between the calculation and the experimental 
results. 

For computations of high energy electron diffraction 
patterns, P(h,k) can be written as 

Pm(h,k)=exp {2niAzm~(h,k)}, (6) 

where ~(h, k) is the excitation error of the hk reflexion 
for an Ewald sphere of radius 1/2. 

In practice the approximation is generally made 
that qm(X,y) does not vary with small changes of 
angle about normal incidence and hence all effects of 
change of angle of incidence can be taken into account 
in Pro(h, k). 

For an object periodic in the (x,y) plane a translation 
of the object in the (x,y) plane of a fraction of the 
primitive lattice vectors can be written in the reciprocal 
space as a phase change. 

~[q m(X + zJX, y + Ay)] = o~'[q m(x,y)] 
x exp {2ni(h. ,dx+k. Ay)}. (7) 

It can be seen then that in the computations, the tilt 
of the crystal is approximated by successive shearing 
movements of the slices. Shearing functions are also 
of use in the face-centred cubic structures viewed in 
the [111] direction as the lattice is made up of successive 
identical atomic layers, each sheared by (½, ½) wifll 
respect to the previous layer. 

As the magnitude of a particular ((h, k) approaches 
1/Az in (6) it can be seen that the phase change of this 
beam on propagation approaches 2n radians. This 
indicates that this particular reflexion will be rein- 
forced and corresponds to an upper layer line in the 
reciprocal lattice due to a c spacing of Az. The normal 
practice in multislice calculations is not to relate Az 
to the actual c spacing in the crystal being studied. 
Since Az is not related to c, the array of beams cal- 
culated must not include reflexions whose ((h,k) is 
near to or greater than 1/Az in magnitude. If these 
reflexions must be included in the calculation, it is 
necessary to reduce the slice thickness, Az. 

In general, identical phase grating functions are 
used in multislice calculations; however, it is quite 
possible to use very thin non-identical slices through 
a unit cell in the crystal and thus include in the cal- 
culation information about the structure being ex- 
amined in the direction of the surface normal, z. If 
an accurate representation of out-of-zone effects be 
required, the slice thickness can be much less than one 
unit cell. Each successive slice through the unit cell 
will, in general, have a different potential distribution. 
Thus, on perf3rming the multislice operation through 
one unit cell, allowance must in general be made for 
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Fig. 1. Projection down the cube diagonal of the lattice of gold 
showing projected positions of atoms in the lattice. Each 
layer of atoms is indicated by a different symbol. Base layer 
is denoted by full circles; second layer by square blocks; 
third layer by triangles. 
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extra directions of diffraction which will have zero or 
near zero weight in the zone on completion of the cal- 
culation. These extra points, however, allow accurate 
representation of the out-of-zone reflexions. The 
accuracy of representation of these out-of-zone points 
will depend on the number of slices taken through one 
unit cell. 

Formulation of the problem for gold 

In Fig. 1 is shown the projection of one unit cell of 
gold onto the (111) plane of the crystal. The projection 
of the face-centred cubic unit cell is the star-shaped 
outline. The structure is made up of three identical 
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Fig. 2. (a) Portion of the reciprocal lattice of gold near the 
origin showing the [111] zone and the next two layers of 
reflexions. (b) Portion of the [111] zone of gold showing the 
projection onto the zone of points in the next two upper 
layers. Full circles are the zone points; triangles indicate 
projected positions of points from the first upper layer; 
squares denote the projected positions of the second upper 
layer. 

hexagonally close-packed layers of atoms, each suc- 
cessive layer being translated by (½, ½) of the primitive 
two-dimensional unit cell edge of one atom layer. Fig. 
2(a) shows a region of the reciprocal lattice of g~ld 
near the origin. In this Figure is illustrated the relative 
positions of the [111] zone and the next two layers 
above the zone. In Fig. 2(b) is shown the [111] zone of 
gold. Projected onto this zone in the direction of the 
zone normal are the positions of the reflexions in the 
first and second layers above the zone. 

The smaller of the two two-dimensional primitive 
cells outlined in Fig. 1 is that chosen for calculation 
when the full unit-cell length in the [111] direction, 
7.08 A, is chosen as the projection distance for the 
phase-grating calculation. Such a unit cell has the 
same reflexions in the zero layer as the [111] zone of 
the face-centred cubic gold, although it has not the 
same c spacing or the correct weights of reciprocal 
lattice points out of the [111] zone. This is the unit cell 
used for .the calculations considering only in-zone 
reflexions in gold. Although there is little significant 
overlap of atoms in the [111] direction, in practice the 
7.08/~, projection distance is too great because the 
effect of the pseudo upper layer line at a c spacing of 
0.141 A -1 becomes important for 7 x7 arrays of re- 
flexions in the zone. The slice may be arbitrarily sub- 
divided in order to reduce the pseudo c spacing and 
hence raise the upper layer line. In this case, three 
identical slices each containing one third portion of 
the projected potential of the full cell and of thickness 
2.36 • were sufficient to allow accurate calculations 
of in-zone effects. 

Alternatively one may construct the phase grating 
for one atom layer from the larger of the primitive 
cells shown in Fig. 1 and perform a multislice cal- 
culation with this phase grating, at each step trans- 
lating it by (½, ½) of the primitive cell edges. By tying 
the slice thickness to the thickness of one atom layer 
(2.36 A) a fuller representation of the complete re- 
ciprocal lattice, i.e. a better representation of the 
crystal structure, is obtained. The extra points in the 
zero layer of the lattice of one atom layer are reduced 
to zero weight every third slice when the propagation 
function is the identity transformation, that is when 
the Ewald sphere is approximated by a plane. The 
remaining non-zero reflexions are then identical to the 
phase grating obtained from projection of the full 
unit cell, containing the in-zone reflexions only. 

If, however, the correct propagation function for 
the wavelength in question is included, the extra 
points in the calculation do not fall to zero weight 
every third slice but have intensities commensurate 
with the large excitation errors of the out-of-zone 
reflexions. If the angle of incidence is set such that the 
Ewald sphere intersects the line through one of these 
out-of-zone reflexions parallel to the crystal normal in 
the zero layer (the extra reflexion satisfied as though 
it were an in-zone reflexion) then every third slice the 
reflexion will have zero weight (Fig. 3). 

A C 2 7 A  - 1" 
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For a number of atomic layers not divisible by 
three, there exists an incomplete layer of unit cells of 
gold at the surface of the crystal which means that the 
extra reflexions will be more intense. If in the multi- 
slicing operation one slice of atoms is sheared twice, 
the effect is that of a stacking fault in the crystal, e.g. 
abc, ab, abc, so the effect of such a defect on the cal- 
culations can be determined quite readily. Of course, 
if the same angular range is to be covered in the upper 
layer line calculation as in the equivalent zone-only 
calculation, three times as many reflexions must be 
used. Thus for multislice methods the computation 
time, which is proportional to the square of the num- 
ber of reflexions, is increased by a factor of approxi- 
mately nine in tbis case. 

Experiment 

The principal reasons for choosing gold as a specimen 
for this investigation were: 

(i) Gold is an atom of high atomic number. 
(ii) Since it is comparatively chemically inert it is 

improbable that thick ordered layers of gas or oxide 
would form on the surfaces of the crystal in the poor 
vacuum conditions of the electron diffraction camera. 
Although the effects of such layers are calculable, 
their presence would only further complicate the 
calculation of diffraction intensities. 

Preparation by epitaxial growth of vacuum-de- 
posited films on silver [111] oriented surfaces gives 
reasonable areas of perfect single crystal of [111] 
orientation. These films were prepared in a vacuum 
evaporation chamber at pressures of the order of 
5× 10 -8 Torr and subsequently stripped from the 
silver substrates in a dilute nitric acid bath. 

The specimens were then examined in the conver- 
gent beam diffraction camera (Cockayne, Goodman, 
Mills & Moodie, 1967). This camera can obtain dif- 
fraction patterns from regions of crystal of approxi- 
mately 300/~ in diameter. Thus, by first examining 
the image of the foil in the camera, diffraction could 
be obtained from defect-free regions of crystal. A 
liquid nitrogen-cooled baffle surrounding the specimen 
prevented significant contamination during exami- 
nation. All results reported in this investigation were 
obtained with an electron acceleration potential of 
79 keV. 

Some difficulty was experienced with specimen 
damage during long exposures to the electron beam. 
This is believed to be due to ion bombardment of the 
specimen resulting from small discharges and electrical 
breakdowns in the electron gun. In Fig. 4 is shown the 
effects observed in the Kossel-Mollenstedt patterns of 
the [111] zone axis of gold when such damage occurred. 
It is believed from experience with a Hitachi HU125 
microscope in this laboratory that such problems can 
be avoided if the camera operating pressure can be 
reduced from 5 x 10 .5 torr to less than 10 .6 torr. 

In Fig. 5 is shown a Kossel-Mollenstedt pattern 

near the [111] axis of a perfect region of gold crystal. 
By insertion of an aperture to reduce the angle of 
convergence in the illuminating electron beam, a 
convergent beam diffraction pattern of the same region 
or crystal can be obtained (Fig. 6), whose angle of 
incidence can be measured precisely by reference to 
the Kossel-Mollenstedt pattern. The convergent beam 
_pattern shown is of a central beam flanked by 220 and 
220 reflexions. The diffracted beams are both of equal 
mean excitation error. The mean angle of incidence of 
the illuminating beam is 0.0821 radian with respect to 
the [111] zone axis, and the angular range represented 
across a disc is 0.018 radian. In Fig. 7 are shown 
three microphotometer traces obtained from this con- 
vergent-beam pattern along different paths. The disc in 
Fig. 6 which is indexed 000 displays the variation in 
intensity of the directly transmitted electrons which are 
incident on the crystal in the form of a well-defined 
cone having a half-angle of 0.009 radian. The discs 
flanking this then are a direct measure of the inten- 
sities of the 220 and 220 reflexions as a functicn of the 
range of angles of incidence defined by the diameter 
of the 000 disc. The picture was the nearest to a syste- 
matics case observed within the large set of photo- 
graphs taken. The effects of the non-systematic inter- 
action, the horizontal bar which crosses the 000 disc, 
have been avoided as much as possible by taking mi- 
crophotometer scans which do not intersect the bar. 
Hence, only a one-dimensional calculation may be 
necessary. 

These microphotometer traces, then, are a direct 
measure of the variation of intensity with angle of 
incidence for the 000, 220 and 220 reflexions. Cal- 
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Fig. 3. Ewald sphere construction for an angle of incidence 
such that an out-of-zone reflexion in the first upper layer is 
satisfied as though it were an in-zone reflexion, z is the excita- 
tion error of a reflexion in layer l= 1. 
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(a) (b) 

Fig. 4. (a) Kossel-Mollenstedt pattern centred about the [111] zone of a perfect region of a gold crystal. (b) Kossel-Mollenstedt 
pattern centred about the [111] zone of a region of damaged gold crystal. This region had previously been exposed to 
the electron beam in the apparatus for 10 minutes. 

[To face p. 402 
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Fig. 5. Kossel-Moilenstedt pattern of a perfect region of gold 
crystal. The pattern is centred about an angle of approx- 
imately 0.06 radian from the [111] zone axis. 



A C T A  C R Y S T A L L O G R A P H I C A ,  VOL. A27,  1971--LYNCH PLATE 18 

Fig. 6. A convergent  beam diffraction pat tern obtained by insertion of  a small aperture in the electron beam which had pro- 
duced the pattern shown in Fig. 5. The diffraction pat tern shows a central beam flanked on each side by equally excited ~20 
and 2~0 reflexions. The diameter  of  the central beam disc corresponds to a range of  angles of  incidence of  0.018 radian. The 
parallel bars of  intensity in the central beam indicate that  the picture is a near-systematics case. 
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Fig. 13. Convergent beam diffraction picture, the mean angle 
of incidence parallel to the [111] zone axis. The region be- 
tween the central beam and the 220 reflexions contains max- 
ima in intensity in the diffuse scattering in the positions where 
one might find 111 and 200 reflexions. In order to bring out 
the region of interest some contrast enhancement has been 
used in the printing of the experimental picture. Also the 
lattice points {242} have been supplessed. 

Fig. 14. Electron diffraction pattern from a [111] crystal of gold, 
angle of incidence parallel to the zone axis. Extra reflexions 
observed in the projected upper layer-line positions. 

lTo face p. 403 



D. F. L Y N C H  403 

culations have been made in an attempt to match these 
experimental results. 

Calculation 

In the calculation, the range of angles of incidence 
must first be determined. This is done by comparison 
of experimental Kossel patterns with computed Kossel 
patterns (Figs. 8 & 9). Then, the crystal thickness 

%_ 

Fig. 7. Microphotometer  tracings obtained from the picture 
shown in Fig. 6. The three Irazings shown are taken as indi- 
cated by the arrows across the discs. The vertical bars in the 
diagram define the edges of the diffraction discs. Within each 
disc then, the trace measures the variation of intensity of that 
particular reflexion as a function of  .angle of incidence. The 
traces between the discs are a measure of the intensity of  the 
diffuse scattering as a function of the scattering angle. 

2~ 
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Fig. 8. A computer-drawn Kossel-Mollenstedt pattern. Lines 
have been drawn for the [111] zone reflexions of magnitude 
greater than 0.3 volt. The black bars, called 1 and 2, are then 
equivalent to the ranges of angle of incidence for which cal- 
culations were made. 

can be determined from the analog computer. Having 
olztained these two parameters, angle and thickness, 
calculation of diffracted intensity as a function of 
angle of incidence at various levels of approximation 
can be made. 

For ease of comparison of these various methods the 
curves of intensity of diffracted beams as a function of 
angle of incidence (rocking curves) have been grouped 
together in Fig. 10. Another method of comparison of 
different calculations, although not with the experi- 
mental results, is to study variation of intensity as a 
function of crystal thickness at a fixed angle of inci- 
dence. Curves of this type are grouped together in 
Figs. 11 and 12. 

Kossel-Mollenstedt patterns 
These patterns are used to identify exactly the angles 

of incidence used in obtaining the diffraction patterns. 
In addition, computed patterns of the same angular 
range give some idea of the important reflexions 
needed in describing the diffraction patterns. In Fig. 8 
is shown such a computer-drawn Kossel pattern. The 
pattern is made up of lines which represent the locus 
of angles of incidence which satisfy a particular re- 
flexion. In this pattern, only those lines resulting from 
in-zone reflexions of structure amplitude greater than 
0.3 volt are drawn. On the map is indicated the range 
of angles of incidence used in the calculations for 
comparison with the results shown in Fig. 7. From 
this map one might conclude that quite small numbers 
of reflexions would be sufficient to describe the ex- 
perimental patterns. 

In Fig. 9 is a computer-drawn Kossel pattern 
covering an identical range of angle to that of Fig. 8. 
In this case, however, the pattern includes all lines 
resulting from reflexions from the first nine upper 
layers above the [111] zone. Again, only those re- 
flexions of structure amplitude greater than 0"3 volt 
are drawn. Now, if for a range of angles of incidence 
as represented in the Figure by the black bars are 
chosen, then every line intersecting the bar is a re- 
flexion that will be satisfied. Similarly, every line in 
close proximity to the bar indicates a small excitation 
error for the corresponding reflexion. The increase in 
the density of lines in this second Kossel pattern is an 
indication of the weight of out-of-zone reflexions in 
dynamic calculations for gold. Both computer-drawn 
Kossel maps can be compared to the experimental 
Kossel patterns in Figs. 4 and 5. Although in the com- 
puted maps the intensities of all the lines are the same, 
the contrast in the experimental result is roughly 
comparable to the contrast produced by the densities 
of lines in Fig. 9. 

Analog computer calculations 
The analog computer was first set up to allow three- 

beam calculations including only the principal re- 
flexions seen in the experimental photograph, that 
is the 220, 000 and 220. Such a calculation by this 
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method requires that the value of the 440 reftexion be 
included as it acts as a coupling factor in the calcula- 
tion. The results of these calculations were displayed 
on a cathode ray oscilloscope and, for permanent 
records, on a chart recorder. The results were in the 
form of intensity ~,s. angle of incidence for the central 
beam and diffracted beams. These were recorded for 
a variety of thicknesses and compared with the ex- 
perimental results in order to obtain an estimate of 
the specimen thickness. In Fig. 10(a) is shown the best 
fit obtained. This indicated that the crystal thickness 
was 420 + 20 ~.  

Three beams was the largest number for which 
rocking curve calculations could be made by the ana- 
log computer. However, by use of symmetry reductions 
to the problem (Johnson, 1968), the inclusion of 7 
beams for calculation of variation of intensity with 
crystal thickness at a single angle of incidence was 
possible. These calculations were used to test whether 
the systematics approximation would be of any use 
in the multislice calculations. In Fig. 11, sets (a) and 
(b) are for 7-beam systematics and non-systematics 

respectively. The set of curves (a) were calculated 
using the 000, ~20, 220, 440, 440, 660, 660 reflexions. 
The set of curves (b) were calculated using the 000, 
220, 220, 422, 242, 624, 264 reflexions. Comparison of 
the relative intensities of the 440, 440 and 2122, 242 re- 
flexions indicated that for the angle of incidence used 
more intensity was absorbed into the 422, 242 re- 
flexions than into the 440, 440 reflexions. Thus it was 
felt that the systematics approximation would not be 
appropriate for more detailed calculations. The curves 
in Fig. 11, sets (a) and (b) of the central beam and 220 
reflexions, show a change only of curve shape from 
sinusoidal form in the systematics case to a non- 
sinusoidal form in the non-systematics case. The angle 
of incidence for these calculations corresponds to the 
centre of the rocking curve of the central beam in Fig. 
10(a). This is the case when the excitation errors of 
the 220 and 220 reflexions are exactly equal. 

Multislice calculations 
Initially, for calculations involving only zone re- 

flexions, a phase grating was calculated using Hartree- 
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Fig. 9. A computer-drawn Kossel-Mollenstedt pattern. Lines have been drawn for reflexions of magnitude greater than 0.3 volt. 
The same angular range has been covered as in Fig. 8. In this case, however, reflexions from the first nine upper layers above 
the [111] zone have been included. 
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Fock-Sla te r  form factors for gold f rom International 
Tables for X-ray Crystallography (1962). The phase 
grating included a total of  611 reflexions centred about  
the [111] zone axis. The slice thickness was found to 
be satisfactory if less than 3.5 A. It was chosen to be 
2.36 A for convenience of  compar ison with upper  
layer-line calculations. Using 37 reflexions f rom this 
phase grating, multislice calculations were made to a 
thickness of  500 A. At  this thickness, the sum of  in- 
tensities in the diffracted beams was 87 % of the initial 
intensity. The calculations were quite rapid, taking 
one minute per angle of  incidence. 

( a )  

fl 

, F i!f  
' "  ; i l l  I I I r ~ 
I l l r l  i t  ! I I I ~/ '%11 I 

I ! u 
i I t  

| i t ,  

s 
Ij V : "  

7 6  U 
5 ,4  ::.=.:.r..:l 
3: :527_.:.27_.! 
1 

t~ 

~ ' .  

zi -) 
A 

/ "=I\ 
(b) " v v 

#\ 
(e) I z, v ',, 

A n g l e  

Fig. I0. Calculated rocking curves compared with measured 
rocking curves. (a) Comparison of analog computer calcula- 
tions with 37-beam multislice calculations and with exper- 
iment. (b) Comparison of 129-beam multislice calculations 
including upper layer line effects with experiment. Curve 5 
was made for the range of angles shown in Fig. 8 at bar 
number 2. Curve 4 was made for the range of angles shown 
in Fig. 8 at bar number 1. (c) Comparison of 129-beam mul- 
tislice calculations for three thicknesses separated by one 
face-centred cubic unit cell diagonal (7.08 A), illustrating 
best fit for a thickness of 417.7 A. Identification of curves: 
(1) Experimental microphotometer traces. (2) 3-beam analog 
computer calculation for a thickness of 420 A. (3) 37-beam 
multislice calculation, thickness 420 A. Zone reflexions only. 
(4) 129-beam upper layer-line calculation, thickness 417.7 A. 
Angular range is that indicated in position 1, Fig. 8. (5) 129- 
beam upper layer-line calculation, thickness 417.7 A. An- 
gular range is that indicated in position 2, Fig. 8. (6) 129- 
beam upper layer-line calculation, thickness 410.6 A. (7) 
129-beam upper layer-line calculation, thickness 424.8 A. 
The lines marked with z indicate the amount by which the 
zero of the associated calculated curve has been offset, 

i , ~ 1 " 0 2  ' ~ ' ~ ' ' ~ r 4 0  
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Fig. 11. Calculated curves of intensity as a function of crystal 
thickness. Angle of incidence is that corresponding to 
the centre point in the rocking curves for the 000 reflexion 
in Fig. 10. (a) Analog computer 7-beam systematics approx- 
imation. (b) Analog computer 7-beam non-systematics case. 
(c) Multislice calculation for 37 beams and slice thickness of 
2-36 /~. (d) Multislice calculation for 37 beams and slice 
thickness of 7-08/~. 

For  the case of  exactly equal excitation errors for 
the 220 and 220 reflexions, curves of  intensity vs. 
thickness were recorded [Fig. l l(e)]. These curves are 
compared  with the analog computer  7-beam calcu- 
lations. The period of  oscillation in the curves is only 
approximately  comparable  and the detailed shapes 
are different. In Fig. 1 l(d) is shown the effect of too 
great  a slice thickness, i.e., 7.08 A. The extra turning 
points in these curves are a result of  too great a slice 
thickness. 

Curves of  intensity vs. angle of  incidence for a 
range of  thicknesses about  420 A were calculated. In 
Fig. 10(a) is shown the best fit of  these curves with 
the experimental rocking curves. The fit with experi- 
ment  is quite poor  as none of  the turning points in the 
curves coincide. It can be seen that  there has been a 
small change in the curve profiles between the three- 
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beam analog computer calmdations and the 37-beam 
multislice calculations. 

The poor fit with experiment necessitated calcula- 
tions with better representation of out-of-zone effects. 
A phase grating was constructed from a single atom 
layer 2.36 A thick having 611 reflexions of which 211 
reflexions are in the zone. Identical form factors were 
used as for the zone-only calculations. In terms of face- 
centred cubic indices, the phase grating covers as far 
out in the [111] zone as the 14,14,0 reflexion. Multislice 
calculations were then made using 129 beams, 43 
beams in the [111] zone, to a crystal thickness of 500/~,. 
The sum of intensities in the diffracted beams was 
then only 75 % of the initial intensity. This sum of 
intensity is considered to be only marginally satisfac- 
tory, however since the calculations took eight minutes 
per angle of incidence, the number of beams was not 
increased. 

Typical behaviour of out-of-zone reflexions in these 
calculations can be seen in Fig. 12. In this Figure is 
shown the variations of intensity with thickness of the 
111 r. flexion for the case of the 220 reflexion exactly 
satisfied. For numbers of slices not divisible by three 
the intensity of this reflexion is as high as 4 to 5 x 10 .3 
of the incident intensity. At every third slice, however 
this intensity falls to values less than 1 x 10 .3 of the 
incident intensity. The remaining intensity in this 
out-of-zone reflexion, in the case of integral numbers 
of unit cells, was sufficient to give some hope of de- 
tection in the convergent beam diffraction camera. 
Many long-exposure pictures were taken, of which 
quite a few were spoilt by ion damage of the crystal. 
Of the few pictures from undamaged crystals it was 
found that the angles at which the upper layer-line 
refiexions occurred coincided with maxima in the 
thermal diffuse intensity distributions (Fig. 13) for 
the crystals examined, all being about 350 to 450/~ in 
thickness. In conventional parallel beam diffraction 
patterns taken from these foils, the extra pointg can 
be seen (Fig. 14), however these average over a larger 
area of the gold foil and will contain contributions due 
to stacking faults in the crystal. Better pictures of out- 
of-zone reflexions from [111] gold foils were observed 
by Sanders & Allpress (unpublished) by selected area 
diffraction from very thin foils, about 20 to 40 
thick. 

In Fig. 10(c) are shown curves of intensity vs .  angle 
of incidence for three thicknesses compared with the 
experimental results. The thickness intervals corre- 
spond to one unit cell of gold. The fit in the diffracted 
beam 220 is the best for 417.7 A crystal thickness. It 
can be seen that the degree of fit has improved a great 
deal over the zone-only calculation. No attempt has 
been made to subtract the diffuse background from 
the experimental microphotometer traces so the degree 
of fit is judged by the alignment of turning points of 
the calculated and experimental curves. The fit of the 
central beam breaks down towards the edge of the 
convergent beam disc. 

A minimal angular range was selected for these 
calculations because of computer time limitations. 
Only eleven points were sampled across the range, the 
computation time being eight minutes per point. 

v- ,  

X 

× 

t -  

Thickness x 10 -1 

0 6 12 18 24 

(b) Thickness x 10 -1 

Fig. 12. Variation of intensity as a function of crystal thickness 
for the case of the 220 reflexion satisfied. (a) 000 reflexion. 
(b) Tll reflexion. The intervals of calculation corresponds 
to one atom layer thickness on the crystal. 
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Symmetry 
In Fig. 8 two ranges of angles of incidence, separated 

by 60 degrees, are indicated. For the [111] zone, which 
has hexagonal symmetry, these two ranges are equiv- 
alent. As a check for the zone-only calculations, 
both ranges were used and the results were identical. 

When effects out of the [111] zone are included, the 
symmetry becomes trigonal, that is, the symmetry of a 
cube viewed down the body diagonal rather than that 
of a projected cube. Thus when calculations were 
made over both ranges, small differences in the intensity 
vs. angle of incidence curves were observed [Fig. 10(b)]. 
The differences are sufficiently great to allow identi- 
fication of the experimental results with respect to one 
azimuth than the other. 

Conclusions 

It must be emphasized that these calculations have 
been purely elastic, that is, no absorption parameters 
have been included. Only one thermal parameter and 
one set of form factors have been used. The set of 
Hartree-Fock-Slater form factors used were obtained 
from International Tables for X-ray Crystallography 
(1962) and differ by only 1% from more recent values 
published (Doyle & Turner, 1967). Nonetheless, rea- 
sonable fit with experiment has been obtained. The 
poor fit of the central beam near the edge of the con- 
vergent-beam disc indicates that some refinement of 
the form factor for gold is necessary. At this stage it is 
not known whether the fit is improved by using the 
form factors of Doyle & Turner (1967). 

It appears that none of the approximations used in 
measurement of form factors for light atoms to 1% are 
applicable to gold; that is, the systematics approxi- 
mation or the two-dimensional (zone-only) approxi- 
mation. 

The calculations show that it is necessary to include 
out-of-zone information in order to describe the in- 
tensities of diffracted beam~ from a gold single crystal. 
For the particular range of angles chosen the lack of 
agreement between a zone-only calculation and ex- 
periment is quite large. The lack of agreement is illu- 
strated by the correspondence of a maximum in the 
calculated curve for the diffracted beam 220 with a 
minimum in the experimental curve, Fig. 10(a), curve 
number 3, the first maximum in the calculated curve 
for the 220 reflexion. The inclusion of out-of-zone re- 
flexions has removed this disagreement with experi- 
ment. Phenomenological absorption parameters used 
in conjunction with a zone-reflexions-only calculation 

could not be used to represent out-of-zone reflexions 
because they could not supply the additional dynamical 
coupling paths that exist by way of the out-of-zone 
reflexions. Thus the absorption parameters would ex- 
hibit the difficulties inherent in using such parameters 
to represent weak-beam effects. That is each absorption 
parameter would be found to have variation in magni- 
tude with angle of incidence. This variation may not 
be immediately apparent by measurements which 
average over a range of angles of incidence of the 
order of three to four minutes of arc or greater. It is 
felt that the next step to higher precision in calculation 
of diffracted beam intensities for gold would be the 
inclusion of phenomenological absorption parameters 
in addition to out-of-zone reflexions. 

For quick estimation of coarse features in electron 
diffraction from gold, only a few beams in some 
orientations seem to be necessary; for example, the 
quick estimation of crystal thickness to low accuracy. 

For calculations near the zone axis in gold, within 
0.01 radian, even with 127 reftexions, at a thickness of 
500 A the sum of intensities in the beams was only 0.2 
electrons. Thus it seems that for such a heavy atom, 
even with a small unit cell, calculations close to a zone 
axis would be very time consuming, since many more 
than 127 reflexions would need to be included. 

The author wishes to thank Dr A. W. S. Johnson for 
his help with computing methods, and Dr J. V. Sanders 
and J. Allpress for showing to him point diffraction 
patterns obtained from [111] gold foils of thickness 
of the order of 25 A. The author is indebted to Mr 
A. F. Moodie for many helpful discussions on the 
theory. 
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